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Abstract
In this paper we present the novel qualities of entanglement of formation (EoF)
for general (so also infinite-dimensional) quantum systems. A major benefit of
our presentation is a rigorous description of EoF. In particular, we indicate how
this description may be used to examine optimal decompositions. Illustrative
examples showing the method of estimation of EoF are given.

PACS numbers: 03.65.Ud, 03.65.Ta, 03.67.-a

1. Introduction

The problem of quantum entanglement of mixed states has attracted much attention recently
and it has been widely considered in different physical contexts (cf [2] and references therein,
see also [3–6]). Following recent works by Peres [1] and Horodecki et al [2, 7] there exists a
simple criterion allowing one to judge whether a given density matrix �, representing a 2× 2
or 2 × 3 composite system, is separable. On the other hand, the definition of a measure of
entanglement for general quantum systems, as well as the problem of finding operational,
sufficient and necessary conditions for separability in higher dimensions, still remains open
(cf [8, 9], and [2] and references therein).

In this paper we are concerned with the entanglement of formation, EoF, introduced
in [10]. Let us stress that the principal motivation for our generalization of the definition
of EoF follows from the foundations of quantum mechanics: a quantum system is described
by infinite-dimensional Hilbert space. Further, to indicate that this concept stems from the
mathematical structure of a tensor product we develop the theory of EoF in general terms of
composite systems. Moreover, we look more closely at the original definition of EoF. Namely,
there is a difficulty in implementing the definition given by Bennett et al, in the sense that it
is not clear why the operation of taking min over the set of all decompositions of the given
state into a finite convex combination of pure states is well defined (for details see Optimal
decompositions in section 5.3). To overcome this problem and to have a measure with nice
topological properties we shall use the theory of decomposition which is based on the theory of
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compact convex sets and boundary integrals. This paper is organized as follows. In section 2
we set up the notation and terminology, and we review some of the standard facts on the theory
of decomposition. Section 3 contains our definition of EoF with the proof that, according to
our definition, EoF is equal to zero if and only if a state is a separable one. In other words,
EoF leads to a well established criterion of separability. In section 4 we review the properties
of EoF. Namely, we indicate how techniques based on decomposition theory can be used to
study EoF. Moreover, some simple examples showing the method of estimation of EoF are
given. Furthermore, the proof of convexity and a detailed study of the topological properties
of EoF are obtained. In particular, it is shown that the family of maximally entangled states
is a subset of pure states. In the final section 5, we present some other examples of explicitly
calculated EoF and we clarify the relation between our definition and that of Bennett et al.
Furthermore, we provide a detailed exposition of the concept of optimal decompositions. Also,
some remarks concerning the uniqueness of the measure of entanglement are given.

2. Preliminaries

Let us consider a composite system ‘1 + 2’ and its Hilbert space of the pure states H1 ⊗ H2

where Hi is the Hilbert space associated with subsystem i (i = 1, 2). Let B(H1) denote
the set of all bounded linear operators on H1 while M stands for a (unital) C∗-subalgebra
of B(H2). We will assume that H1 is finite-dimensional space (in our concluding remarks,
section 5, we will indicate how to dispense with that assumption). H2 will be an arbitrary
(infinite-dimensional, separable) Hilbert space. In other words, the composite system consists
of a small subsystem and a large heat bath, a rather typical situation for concrete physical
problems. Any density matrix (normal state) on H determines uniquely a linear positive,
normalized, functional ω�(·) ≡ ω(·) ≡ Tr{�·} on B(H) which is also called a state.

We will assume the Ruelle separability condition for M (cf [11, 12, 15]): a subset F of
the set of all states S of M satisfies the separability condition if there exists a sequence {Mn}
of sub-C∗-algebras of M such that ∪n�1Mn is dense in M, and each Mn contains a closed,
two-sided, separable ideal In such that

F = {ω;ω ∈ S, ‖ω|In‖ = 1, n � 1}. (1)

This condition leads to a situation in which the subsets of states have good measurability
properties. Furthermore, one can verify that this separability condition is satisfied for two
important cases:

• M is a separable C∗-algebra. Then S is metrizable and the Borel and Baire structures on
S coincide. We put F = S in that case.

• M = B(H) for some Hilbert space H and F is the set of all density matrices (normal
states).

Thus, the separability condition covers the basic models of quantum mechanics and we will
restrict our attention to models satisfying this condition. However, generalizations of our
approach are possible.

We recall that the density matrix � (state) on the Hilbert space H1⊗H2 is called separable
if it can be written or approximated (in the norm) by the density matrices (states) of the form:

� =
∑

pi�
1
i ⊗ �2

i

(
ω(·) =

∑
pi(ω

1
i ⊗ ω2

i )(·)
)

where pi � 0,
∑

i pi = 1, �αi are density matrices on Hα , α = 1, 2, and (ω1
i ⊗ω2

i )(A⊗B) ≡
ω1
i (A) · ω2

i (B) ≡ (Tr �1
i A) · (Tr �2

i B) ≡ Tr{�1
i ⊗ �2

i · A⊗ B}.
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Now, for the convenience of the reader, we introduce some terminology and give a short
resume of results from convexity and Choquet theory that we shall need in the following (for
details see [16, 17, 22], and [15]). Let A stand for a C∗-algebra. From now on we make the
same assumption of separability for A which was posed for M. In the next sections, by a
slight abuse of notation we will write A for B(H1)⊗M. By S we will denote the state space
of A, i.e. the set of linear, positive, normalized, linear functionals on A. We recall that S
is a compact convex set in the ∗-weak topology. Further, we denote by M1(S) the set of all
probability Radon measures on S. It is well known that M1(S) is a compact subset of the
vector space of real, regular Borel measures on S. After these preliminaries let us recall the
concept of a barycentre b(µ) of a measure µ ∈ M1(S):

b(µ) =
∫

dµ (ϕ)ϕ (2)

where the integral is understood in the weak sense. The set Mω(S) is defined as a subset of
M1(S) with barycentre ω, i.e.

Mω(S) = {µ ∈ M1(S), b(µ) = ω}. (3)

Mω(S) is a convex closed subset of M1(S), hence compact in the weak ∗-topology. Hence, it
follows by the Krein–Milman theorem that there are ‘many’ extreme points in Mω(S). We say
the measure µ is simplicial if µ is an extreme point in Mω(S). We denote by Eω(S) the set of
all simplicial measures in Mω(S). Finally, we will need the concept of orthogonal measures.
To define that concept one introduces firstly the notion of orthogonality of positive linear
functionals on A: given positive functionals φ,ψ on A we say that φ and ψ are orthogonal,
in symbols φ⊥ψ , if for all positive linear functionals γ on A, γ � φ and γ � ψ imply that
γ = 0.

Turning to measures, letµ be a regular non-negative Borel measure on S and letµV denote
the restriction of µ to V for a measurable set V in S, i.e. µV (T ) = µ(V ∩T ) for T measurable
in S. If for all Borel sets V in S we have∫

S
ϕ dµV (ϕ)⊥

∫
S
ϕ dµS\V (ϕ) (4)

we say thatµ is an orthogonal measure on S. We recall that the set of all orthogonal measures on
S with barycentre ω, Oω(S), forms a subset (in general proper) of Eω(S), i.e. Oω(S) ⊂ Eω(S).

3. Entanglement of formation

Let us define, for a state ω on B(H1)⊗M, the following map:

(rω)(A) ≡ ω(A⊗ 1) (5)

where A ∈ B(H1).
Clearly, rω is a state on B(H1). One has the following statement:

Let (rω) be a pure state on B(H1) (so a state determined by a vector from H1). Then ω can
be written as a product state on B(H1)⊗M.

The proof of this statement can be extracted from [13]. However, for the convenience of
the reader we provide the basic idea of the proof. It is enough to consider the case with an
arbitrary but fixed positive B in unit ball of M such that 0 < ω(1 ⊗ B) < 1. Then (rω)(A)

can be written as

(rω)(A) = ω(1⊗ B)ωI (A) + (1− ω(1⊗ B))ωII (A) (6)

where ωI (A) = 1
ω(1⊗B)ω(A ⊗ B) and ωII (A) = 1

1−ω(1⊗B)ω(A ⊗ (1 − B)). Clearly ωI and

ωII are well defined linear, positive functionals (states) on B(H1). Hence, the purity of (rω)
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impliesωI = ωII . Consequently, ω(A⊗B) = ω(A⊗1)ω(1⊗B). The rest is straightforward
so the proof is completed. (For more details we refer the reader to [13, 14].)

Conversely, there is another result in operator algebras saying that, ifω is a state on B(H1),
then there exists a state ω′ over B(H1) ⊗M which extends ω. If ω is a pure state of B(H1)

then ω′ may be chosen to be a pure state of B(H1)⊗M (cf [15]).
Now we are in a position to give a modification and discuss the definition of EoF (cf [10]).
Let ω be a state on B(H1)⊗M. The EoF is defined as

E(ω) = inf
µ∈Mω(S)

∫
S

dµ (ϕ)S(rϕ) (7)

where S(·) stands for the von Neumann entropy, i.e. S(ϕ) = −Tr �ϕ log �ϕ where �ϕ is the
density matrix determining the state ϕ.

In order to comment on the above definition we recall that the map r and the function S are
(∗-weakly) continuous. At this point we want to strongly emphasize that we use the entropy
function S only to respect the tradition. Namely, to have a well defined concept of EoF we
need a concave non-negative continuous function which vanishes on pure states (and only on
pure states). In our case, with the first subsystem being finite, the von Neumann entropy meets
these conditions. Thus, we define EoF as an infimum of integrals evaluated on a continuous
function and the infimum is taken over the compact set. Therefore, the infimum is attainable,
i.e. there exists a measure µ0 ∈ Mω(S) such that

E(ω) =
∫

S
dµ0 (ϕ)S(rϕ) (8)

and

ω =
∫

S
dµ0 (ϕ)ϕ. (9)

Now we want to show that F � ω �→ E(ω) is equal to 0 only for separable states (we
recall that F stands for the subset of states satisfying Ruelle’s condition, cf section 2). Assume
E(ω) = 0. Then∫

S
dµ0 (ϕ)S(rϕ) = 0 (10)

for some probability measure µ0. As S(rϕ) � 0 and it is the continuous function we infer that
S(rϕ) = 0 for each ϕ in the support of µ0. But, as the entropy is a concave function we have

S ◦ r(ϕ) �
∫

dξ (ν)S(rν) (11)

for any positive measure dξ on S such that ϕ = ∫
dξ (ν)ν. In particular, taking a measure

supported on pure states (such a decomposition always exists under the assumed separability
condition) we infer S(rν) = 0, so rν is a pure state and consequently ν is a product state. So
ϕ is a convex combination of product states. Finally, as ω = ∫

S dµ0 (ϕ)ϕ and µ0 can be well
approximated by finite measures (see [18]), we infer that ω can be approximated by convex
combinations of product states, so ω is a separable state.

Now, let us assume that ω is a separable state, i.e. ω can be approximated by convex
combinations of product states ω(N)

i :

ω = lim
N

N∑
i=1

λ
(N)
i ω

(N)
i . (12)

Define

µN =
N∑
i=1

λ
(N)
i δ

ω
(N)
i

(13)
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where δ
ω
(N)
I

are the Dirac measures of the pointω(N)
i . Considering the weak limit of

∫
dµN(ϕ)ϕ

we can infer that there is a measure µ such that∫
dµ (ϕ)ϕ = ω

∫
dµ (ϕ)S(rϕ) = 0. (14)

So we arrive at:

Theorem 1. A state ω ∈ F is separable if and only if EoF E(ω) is equal to 0.

4. Properties of EoF

4.1. Relations to other decompositions

Let us discuss some relations between decompositions used in our definition of EoF and
other types of decompositions. Assume that the state ω is separable, so there is a measure
µ0 ∈ Mω(S) such that

∫
dµ0 (ϕ)S(rϕ) = 0. But as we consider a non-negative function and

positive measures this implies that there is a simplicial measure µs
0 (in fact, there can be many

such measures) such that
∫

dµs
0 (ϕ)S(rϕ) = 0. In other words, the infimum is attainable on

the set of simplicial measures Eω(S) (for a more detailed discussion on the role of simplicial
measures in the description of EoF see section 5.3).

On the other hand, as Oω(S) ⊂ Eω(S) we have

inf
µ∈Eω(S)

∫
dµ (ϕ)S(rϕ) � inf

µ∈Oω(S)

∫
dµ (ϕ)S(rϕ). (15)

In general we cannot expect the equality in (15). Namely, there are examples of simplicial
measures which are not orthogonal (cf [19]). So finding an orthogonal measure such that
‘inf’ is attained we can infer that the state is separable but not conversely. To be clearer,
let us recall some algebraic aspects of decomposition theory (cf [15]) which are related
to orthogonal measures. A finite convex decomposition of ω ∈ S corresponds to a finite
decomposition of identity 1 = ∑

i Ti , Ti � 0 within the commutant πω(A)′. The simplest
form of such a decomposition occurs when the Ti are mutually orthogonal projections. This
type of decomposition corresponds to that determined by orthogonal measure. So, taking the
spectral resolution of density matrix �ω we obtain the very special (subcentral) orthogonal
decomposition. Therefore, if we restrict ourselves to decomposition induced by spectral
resolution of �ω, in general, we cannot expect to attain infµ∈Mω(S)

∫
dµ (ϕ)S(rϕ), see also

section 5.3.

4.2. Examples: I

To illustrate the question of computation of EoF we start with very simple models.

(1) The von Neumann entropy (for finite systems) is maximal for the state of the form
ω�m(A) = Tr �mA with �m = 1

dim H 1 (dim stands for dimension). For such state it is
equal to ln(dim H) and this is the maximal value of E.

(2) Let us consider 2 × 2 system with H1 ≡ H2 ( so dim H1 = 2 = dim H2) and the
singled state %− defined as |%−〉 = 1√

2
(|01〉 − |10〉). Here we adopt a notation of

quantum mechanics by writing |01〉 ≡ e0 ⊗ e1, where {e0, e1} is a basis in H1, etc.
Write ω%−(A) = Tr{|%−〉〈%−| · A ⊗ B} where A ∈ B(H1) while B ∈ B(H2). Then
rω%−(A) = Tr{|%−〉〈%−| · A⊗ 1} = Tr{( 1

2 1)A}. So E(ω%−) = ln 2.
(3) Let us consider a d × d system and a so-called maximally entangled state |%d

+ 〉 =
1√
d

∑d
i=1 |i〉 ⊗ |i〉 where {|i〉} is a basis in H1 = H = H2. Again, let us define
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ω%d
+
(A ⊗ B) = Tr{|%d

+ 〉〈%d
+ |A ⊗ B} and consider rω%d

+
. It is easy to note that

rω%d
+
(A) = Tr{( 1

d
1)A}. Hence E(ω%d

+
) = ln d, so E attains its maximal value.

The results just listed are easy to show since there is no question concerning the non-
uniqueness of the decomposition of the (pure) state ω into pure states.

4.3. Convexity of EoF

To prove the convexity of EoF let us show that the set Mλ1ω1+λ2ω2(S) contains the sum of the
sets λ1Mω1(S) and λ2Mω2(S), where λ1 and λ2 are non-negative numbers such that λ1 +λ2 = 1.
To see this we recall (see, e.g., [15] or [21]) that µ ∈ Mω(S) if and only if µ(f ) � f (ω) for
any continuous, real-valued, convex function f . Thus

(λ1µ1 + λ2µ2)(f ) � λ1f (ω1) + λ2f (ω2) � f (λ1ω1 + λ2ω2) (16)

implies the above stated relation between sets. Hence

E(λ1ω1 + λ2ω2) = inf
µ∈Mλ1ω1+λ2ω2 (S)

∫
dµ (ϕ)S(rϕ)

� λ1 inf
µ∈Mω1 (S)

∫
dµ (ϕ)S(rϕ) + λ2 inf

µ∈Mω2 (S)

∫
dµ (ϕ)S(rϕ)

= λ1E(ω1) + λ2E(ω2). (17)

Consequently, the function S � ω �→ E(ω) is the convex one.

4.4. Subadditivity

Consider the tensor product of von Neumann algebras B(H1)⊗M⊗B(H1)⊗M and a state
ω ⊗ ω over it where ω is a state on B(H1)⊗M. We observe

E(ω ⊗ ω) = inf
µ∈Mω⊗ω(ST )

∫
dµ (ν)S1+2(rν)

� inf
µ1×µ2∈Mω(S)×Mω(S)

∫
dµ1 (ν)

∫
dµ2 (ν

′)S1+2(r ◦ ν ⊗ ν ′)

� inf
µ1×µ2∈Mω(S)×Mω(S)

∫
dµ1 (ν)

∫
dµ2 (ν

′)(S1(rν) + S1(rν
′))

= 2E(ω) (18)

where ST denotes the set of all states on B(H1) ⊗ M ⊗ B(H1) ⊗ M, S1+2 (S1) the von
Neumann entropy on B(H1)⊗ B(H1) (B(H1) respectively). The last inequality follows from
subadditivity of the von Neumann entropy. Consequently, EoF also has a form of subadditivity.
Applying the above argument toE(ω⊗· · ·⊗ω) one can consider the ‘density’ of EoF and treat
E(ω) as an extensive (thermodynamical) quantity. This feature of EoF seems to be important
in quantum information (cf [2]).

4.5. Topological properties of EoF

Now we wish to examine the question of continuity of EoF. To describe that topological property
we shall need some preliminaries. Let us consider M1(S) and S as two compact spaces and a
continuous mapping b of M1(S) onto S given by M1(S) � µ �→ b(µ) = ∫

S νdµ (ν), so b(µ)

is the barycentre of the measure µ. Moreover, let us consider the equivalence relation E(b)

on the set M1(S) determined by the decomposition {b−1(ω)}ω∈S of M1(S) into fibres of b.
We denote by q the mapping of M1(S) to M1(S)/E(b), assigning to the point µ ∈ M1(S) the
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equivalence class [µ] ∈ M1(S)/E(b). We equip M1(S)/E(b) with the quotient topology, so
q is the natural (quotient) mapping. As b is a continuous mapping of the compact (Hausdorff)
space M1(S) to the compact (Hausdorff) space S then the equivalence relation E(b) is closed.
We wish to represent the mapping b : M1(S) → S as the composition b ◦ q of the natural
mapping q with the mapping b of the quotient space M1(S)/E(b) onto S defined by letting
b(b−1(ω)) = ω. It is an easy observation that the mapping b is continuous. Hence we have

SM1(S)

M1(S)/E(b)

✲

✁
✁
✁✕❆

❆
❆

b

q b

In particular, b is one-to-one continuous mapping of M1(S)/E(b) onto S. We want to
show that b is a homeomorphism. To prove this we observe that q is the continuous mapping
carrying the compact topological space M1(S) onto the topological space M1(S)/E(b). Then,
M1(S)/E(b) is pre-compact (not necessary Hausdorff space). But, then b is the continuous
mapping of the pre-compact space M1(S)/E(b) onto compact (Hausdorff) space S. Thus, b
is a homeomorphism. Therefore, we arrive at:

Proposition 1. b is a homeomorphism, i.e. the mapping b is quotient.

Now we wish to describe equivalence classes in M1(S)/E(b). Let ωα ∈ S. We observe

b−1(ωα) =
{
µ ∈ M1(S);

∫
ν dµ (ν) = ωα

}
. (19)

In other words, b−1(ωα) is equal to the setMωα
(S) of all probabilistic measures on S which

represent the pointωα ⊂ S. We recall (see [21]) thatµ ∈ Mωα
(S) is equivalent toµ ∼ δωα

, i.e.
thatµ is equivalent to the Dirac measure δωα

where the equivalence of (probabilistic) measures
µ and µ′ is defined as∫

ν dµ (ν) =
∫

ν dµ′ (ν). (20)

But δωα
∼ µ, in turn, is equivalent to (cf [21]) δωα

− µ ∈ N (S) where N (S) is the
annihilator ofA(S) in the dual pair 〈CR(S),MR(S)〉. Here, A(S) (CR(S),MR(S)) is the set of
all continuous real-valued affine functions on S (the vector space of all real-valued continuous
functions, the vector space of all real measures on S, respectively). Now it should be clear
that an equivalence class [µ] in M1(S)/E(b) is equal to {δω + µ;µ ∈ N (S), µ(f ) � −f (ω)
for any 0 � f ∈ CR(S)} with some fixed ω ∈ S.

In order to complete our discussion of the diagram we should examine topological
properties of the set-valued map b−1.

Proposition 2. The set-valued map b−1 is upper semicontinuous.
Proof. The map b−1 is lower (upper) semicontinuous (cf [20]) if and only if, for every closed
set K ⊂ M1(S), the set OL = {ω : b−1(ω) ⊂ K} (the set OU = {ω : b−1(ω) ∩ K �= ∅}) is
closed in M1(S). To examine upper semicontinuity of b−1 let us consider a net {ωα} ⊂ OU

with a limit ω0. Futhermore, let us choose measures {µα ∈ b−1(ωα)∩K}. As K is a compact
subset there exists a convergent subnet {µβ} such thatµβ → µ ∈ K . Since

∫
S ν dµβ (ν) = ωβ

we infer that

ωβ → ω =
∫

S
ν dµ(ν). (21)
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Then, the uniqueness of the limit implies ω0 = ω and the proof of upper semicontinuity of
b−1 is complete. �

Having fully clarified topological relations among S, M1(S) and M1(S)/E(b) we wish
to prove:

Proposition 3. EoF, S � ω �→ E(ω), is the continuous function.

Proof. We start with an easy proof of lower semicontinuity of EoF. To this end let {ωα} be a
net with a limit ω and let E(ωα) � s, where s is a real number. To show that E(ω) � s let us
take ε > 0 and choose µα ∈ Mωα

(S) such that µα(S ◦ r) < s + ε. As M1(S) is a compact
set there exists a convergent subnet {µβ} with the limit µ0. Let Â be an affine, real-valued
continuous function on S. Then

Â(ωβ) = µβ(Â)→ µ0(Â) (22)

and Â(ωβ)→ Â(ω). Thus µ0 ∈ Mω(S). Therefore, s + ε � limµβ(S ◦ r) = µ0(S ◦ r) �
E(ω). Consequently, E(ω) � s and the proof of lower semicontinuity of EoF is complete.

Now, let us consider the question of upper semicontinuity of E(ω). Again, let ωα be a net
with a limit point ω0. Take s such that E(ωα) � s. We observe that, for any µα ∈ Mωα

(S),
µα(S ◦ r) � s. Again, the use of a convergent subnet {µβ} with a limit µ0 implies that
s � limβ µβ(S ◦ r) = µ0(S ◦ r), where µ0 ∈ Mω0(S). Thus, to prove upper semicontinuity
of E(ω) it is enough to show that any µ ∈ Mω0(S) can be obtained as a limit of {µ′β}, i.e.
Mω0(S) � µ = limβ µ

′
β where µ′β ∈ Mωβ

(S). In particular, we want to have

∧ε>0 ∧µ∈Mω0 (S) ∨µβ∈Mωβ
|µ(f )− µβ(f )| < ε (23)

for a continuous function f on S. Assume the contrary, i.e.

∨ε>0 ∨µ∈Mω0 (S) ∧µβ∈Mωβ
|µ(f )− µβ(f )| � ε (24)

for a continuous function f . We note (cf [20]) that the upper semicontinuity of b−1 implies that,
for every open set U ⊂ M1(S), the set {ω : b−1(ω) ⊂ U} is open. Now, assuming (24) one
can find the neighbourhood Uµ of µ which does not contain any µβ . But {ω : b−1(ω) ⊂ Uµ}
is a neighbourhood of ω0. The convergence ωβ → ω0 implies that each neighbourhood of ω0

should contain states of the form ωβ . Thus, also, {ω : b−1(ω) ⊂ Uµ} should contain many ωβ .
Hence, one can find Mωβ

(S) ⊂ Uµ. But this contradicts (24). Therefore, (23) holds and the
proof of upper continuity ofE(ω) is complete. This completes the proof of the proposition. �

As S � ω �→ E(ω) is a continuous convex function, the application of the Bauer maximum
principle leads to:

Corollary 1. E(ω) attains its maximum at an extremal point of S, so the family of maximally
entangled states is a subset of pure states.

5. Examples and concluding remarks

5.1. Examples: II

Let us begin this final section with some other illustrative examples showing the usefulness of
EoF.

(1) Let ω = ∑
k ωk be a decomposition of the state ω. Then, an application of convexity

would lead to the following estimation of entanglement of ω: E(ω) � maxk E(ωk).
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(2) In the discussion of entangled states the positive partial transposition criterion plays an
important role [1, 7]. To consider that question, let us put M = B(H2) with finite-
dimensional Hilbert space H2. We recall that the map α : B(H1 ⊗H2) → B(H1 ⊗H2)

with α = id⊗τ , where τ is a transposition map of the matrix representation of an arbitrary
B ∈ B(H2) in a certain fixed basis, provides an essential ingredient of that criterion. Let
us define (αdω)(A⊗ B) ≡ ω(α(A⊗ B)) and let us note

(rαdω)(A) = (αdω)(A⊗ 1) = ω(α(A⊗ 1))

= ω(A⊗ τ(1)) = ω(A⊗ 1) = (rω)(A). (25)

Consequently, the partial transposition does not change the measure of entanglement.
Therefore, the basic point of that criterion is that id⊗ τ is not a completely positive map.
For further details on the relations between entanglement and positive maps see [14].

(3) Let us consider a d × d system with the corresponding Hilbert space H ≡ H1 ⊗H2 and
let P be a projector such that PH does not contain product states. We recall that such
projectors are related to the concept of unextendible product bases [23]. Let us define the
state ωP as ωP (A ⊗ B) = (Tr P)−1 Tr{P · A ⊗ B}. We want to judge whether ωP is a
separable state. To this end let us consider an arbitrary decomposition of ωP , i.e.

ωP (A⊗ B) = (Tr P)−1 Tr PA⊗ B

= (Tr P)−1
∑
k

Tr PakPA⊗ B ≡
∑
k

λkωk(A⊗ B) (26)

where operators ak � 0 are defined on H and satisfy
∑

k ak = 1 while ωk stands for the
state determined byPakP . AssumeωP is a separable state. Then, there is a decomposition
ωP =

∑
k λkωk such that rωk is a pure state for any k. But, then, ωk would be a product

state, i.e.

ωk(A⊗ B) = Tr �1
k ⊗ �2

kA⊗ B. (27)

This would imply

�1
k ⊗ �2

k = constant · PakP . (28)

But this is impossible as PH does not contain product (vector) states. Consequently,
E(ωP ) > 0.

5.2. Comparison with the Bennett, DiVincenzo, Smolin and Wooters definition of EoF

The presented examples with explicitly calculated E(ω) suggest a close relation of our
EoF with the original definition of EoF, given by Bennett et al, which will be denoted by
EoFB . Obviously, EoF � EoFB . To examine the converse inequality we start with a simple
observation that

inf
µ∈Mω(S)

∫
dµ(ν)S(rν) = inf

{ n∑
i=1

λiS(rνi) : ω =
n∑

i=1

λiνi (convex sum)

}
(29)

and the first infimum is attained for someµ ∈ Mω(S). The above observation follows from the
fact that each measure µ can be (∗-weakly) approximated by measures with finite support. On
the other hand, measures concentrated on Sp, where Sp is the set of all pure states, are known to
be maximal with respect to the orderµ ≺ ν (µ ≺ ν if and only ifµ(f ) � ν(f ) for any convex,
real-valued convex function f , cf [16] or [21]), so minimal on the set of all concave functions.
In particular, such a measure is minimal on S ◦ r . Apparently, the maximality of a measure
(on all convex functions) is too strong a demand and therefore to get the converse inequality
between EoF and EoFB some extra arguments should be given (see the next subsection).
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5.3. Optimal decompositions

In this section we wish to examine the question of the existence of a very special type of
decomposition, so-called optimal decompositions. A decomposition ω = ∑n

j=1 λj�j , where
{�i} are pure states, such that the infimum in the definition of EoF is attained, will be called an
optimal decomposition. In other words, the infimum is attained by a measure µ0 with finite
support contained in the set of all pure states. Thus

E(ω) = inf
µ∈Mω(S)

∫
S
S(r�) dµ(�) =

∫
S

dµ0 (�)S(r�)

with supp µ0 = {�1, . . . , �n}, n < ∞ and �i ∈ Sp. Clearly, µ0 =
∑n

1 λiδ�i where δ� stands
for the Dirac measure, {�i} are pure states and ω = ∑

λi�i . We recall that each measure has
maximal balayage and each state ω ∈ S is the barycentre of a measure which is maximal for
the order $ (for all necessary details see [15,16,21] or [22]). It is an easy observation that µ0

is a maximal measure.
In order to avoid misunderstanding we repeat: entropy is concave, maximality is defined

for convex functions, so inf for ‘x �→ −x ln x’ means sup for ‘x �→ x ln x’.
We recall that maximality of the measure µ0 implies

µ0 is supported by the set {ω;ω ∈ S, f (ω) = f (ω)} (30)

for all continuous convex functions on S where f is the upper envelope of f , i.e. f (ω) =
inf{g(ω);−g ∈ P(S), g � f } (P(S) stands for the set of continuous convex functions on S).
Moreover, if f is the upper envelope of a continuous function on S then

f (ω) = sup
µ∈Mω(S)

∫
f (ν) dµ (ν). (31)

Denote the set of all maximal measures in Mω(S) by Zω(S). One can show (cf [21])
that Zω(S) is a face of Mω(S). The set of all extremal measures in Zω(S) will be denoted by
EZ
ω (S), i.e.

EZ
ω (S) = Eω(S) ∩ Zω(S) (32)

where Eω(S) stands for simplicial measures (cf section 4). Let us consider (cf [21])

F0 = {µ ∈ Mω(S);µ(f ) = f (ω)} (33)

where f is a convex continuous function on S. Obviously, by virtue of (31) the set F0 is
not empty. Let µ ∈ F0 and assume µ = λ1µ1 + (1 − λ1)µ2 where µ1, µ2 ∈ Mω(S) and
λ1 ∈ (0, 1). Clearly, µ1 and µ2 should be in F0. Thus, F0 is a face. It is an easy observation
that F0 is the closed set with the property: µ ∈ F0, ν ∈ Mω(S) and µ ≺ ν imply ν ∈ F0, i.e.
F0 is the hereditary upwards face. Then, the application of the Lumer existence theorem (see
proposition 1.6.4 in [21]) proves the existence of a measure µ0 in F0 ∩ EZ

ω (S). Thus, we have
proved:

Proposition 4. Maximum of the set {µ(−S ◦r);µ ∈ Mω(S)} for a continuous convex function
−S is attained by a simplicial boundary measure.

Now, let us examine a very special case. Namely, if the Hilbert space H of the composite
system is of the finite dimension, say dim H = n, then S can be considered as a compact
subset in the space R

(2n)2
. On the other hand, a probability measure µ on a convex compact

subset in R
(2n)2

is simplicial if and only if µ is supported by an affinely independent set of
(at most (2n)2 + 1) points. Moreover, in the considered (finite-dimensional) case the weak-∗

topology is metrizable. Hence, maximal measures are supported by extremal points in S.
Combining the results just given for the concave function S ◦ r we can infer the existence of
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optimal decomposition. Obviously, it does not exclude a possibility that inf imum is attainable
on some other measures. Nevertheless, for the finite-dimensional case we have EoF = EoFB .

Turning to other decompositions (cf section 4.1) we note that, even in the two-dimensional
case (so for the algebra of 2× 2 matrices), one can write a simplicial maximal measure that is
not orthogonal (cf [15]). Therefore, even for a low-dimensional case one cannot say that EoF,
E(ω) = infµ∈Oω(S) µ(S ◦ r).

Finally we want to point out that the proof of the existence of optimal decomposition
depends only on the structure of the set Mω(S).

5.4. Remarks

There is a frequently considered question of the uniqueness of a measure of entanglement.
We already observed (see comments following the definition of EoF in section 3) that one can
replace the von Neumann entropy by any continuous non-negative concave function which
vanishes on pure states, e.g. � �→ Tr{�(1− �)}. Then, all arguments can be repeated and we
would arrive at a new measure of entanglement. As a matter of fact, the only reason for our
assumption of dim H1 < ∞ was that, in this case, the von Neumann entropy is continuous.
Thus, to perform a further generalization of EoF one can replace � �→ −Tr{� ln �} by another
function from the class just mentioned. Clearly, changing the von Neumann entropy function,
the argument leading to the subadditivity of E(ω) should be modified. The additional reason
to use the von Neumann entropy throughout the paper follows from the fact that there is a nice
relation (cf [24–26]) between the entropy H of subalgebra M1 in M1⊗M relative to the state
ω (M1, and M are von Neumann algebras), the von Neumann entropy of the restricted state
and EoF:

Hω,M1⊗M(M1) = S(rω)− E(ω). (34)

It is clear that the main difficulty for calculating H is encoded in E(ω). Therefore, our results
concerning EoF shed some new light on the nature of H .
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